
E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 191 – 195, 2006.
© IFIP International Federation for Information Processing 2006

Generalizing the Submodule Construction Techniques for
Extended State Machine Models

Bassel Daou and Gregor v. Bochmann

School of Information Technology and Engineering (SITE), University of Ottawa
bdaou@site.uottawa.ca, bochmann@site.uottawa.ca

Abstract. In previous research we extended the submodule construction tech-
niques to cover a more expressive and compact behavioral model that handles
data through parameterized interactions, state variables, and simple transition
guards. The model was based on extended Input/Output Automata, and the al-
gorithm on the Chaos concept. In this paper we generalize these extensions and
improve the submodule construction techniques and algorithms. The generaliza-
tions include regular transition guards including equality and inequality, nega-
tion, conjunction and disjunction of predicates. The algorithm is improved by
utilizing the concept of generic transitions (non refined transitions) that are re-
fined as needed instead of considering all possible refinements of the Chaos.
The algorithm selects needed refinements through dataflow relations bridging
which involves forward propagation of definitions and backward propagation of
usages. The new approach provides a more intuitive explanation of the sub-
module construction algorithm, gives justification for the number of variables in
the new module and results in a much smaller and compact solution.

1 Introduction

Submodule construction, also called equation solving or factorization, considers the
following situation: An overall system is to be constructed which consists of several
components. It is assumed that the specification S of the desired behavior of the sys-
tem is given, as well as a specification of the behavior of all the components, except
one. The process of submodule construction has the objective to find a specification
for the latter component X such that when joined with all other components , referred
to as the Context C, together provide a behavior consistent with the behavior specifi-
cation S. If the modeling paradigm for the behavior specifications is sufficiently lim-
ited, e.g. finite state models, an algorithm for submodule construction can be defined
[MeBo83, Parr89, LaXi90, JoLa91, LeQi90, PeYe98, DrBo99, CDFM01]. Submod-
ule construction finds application in the synthesis of controllers for discrete event sys-
tems [BrWo94], for communication gateway design and protocol conversion
[KeHa93, KNM97, TBD97].

Service Oriented Architecture (SOA) is an area of possible application for sub-
module construction. The submodule construction techniques may be used in Services
synthesis and implementation. However, these techniques need to be developed to fit
SOA requirements, such as data manipulation and handling nonfinite state models.

192 B. Daou and G.v. Bochmann

In this paper we report the continuation
of work published in FORTE 2005
[DaBo05] where we extended the sub-
module construction techniques that has
been limited in the past to finite state
models. In this work we ease the restric-
tions that were applied to these extensions
and we modify the solution approach and
parts of the algorithm to fit the new model
and to provide a smaller, more compact
and more intuitive solution.

2 Model Extensions

In the previous model [DaBo05], data manipulation and value passing were achieved
by extending finite automata models with parameterized interactions, local variables,
simple transition guards and variable assignments. Transition guards were limited to
the conjunction of equality predicates between variables and transition parameters.
In this paper we eliminate this restriction so that guards can include disjunction and
negation as well as inequality predicates between variables and parameters. More-
over, in the previous model, variables were only assigned parameter values; in the
new model we ease this restriction to allow assignment of variables between one an-
other.

3 New Solution Approach

Our previous algorithm followed the general steps of the submodule construction al-
gorithm for finite state machines. It starts with a general superset of behaviors, called
Chaos, it then removes unwanted behaviors through composition, hiding, determini-
zation and bad or uncontrollable state removal. These steps were adapted for the ex-
tended specification paradigm. During the construction of a deterministic model, the
effect of hidden guards and hidden variables was taken care of through state splitting
transformations based on previously collected information about variable configura-
tions. In the new approach we continue to use the same general outline of the algo-
rithm, however, we use the duality concept to obtain a superset of the wanted behav-
ior before hiding, instead of using Chaos machine concept.

We define the dual of a given behavior G as the most general matching behavior
G’ that when joined with G will never generate an output that is not specified
among inputs accepted by G. Besides, G’ always accepts as input any matching
output of G.

G’ puts no restrictions on inputs that are not generated by G. In our model G’ is ob-
tained from G by labeling inputs as outputs and outputs as inputs. So G’ has a set of
variables V’ matching the set of variables V of G.

Fig. 1. Submodule Construction: General
Architecture

Specification

X Context
Vc

Vs

Vx
System

 Generalizing the Submodule Construction Techniques 193

Thus, as shown in figure 2 the su-
perset of behaviors that is used in the
new submodule construction algo-
rithm will be the dual of C joined with
the dual of S, (C.S’)’, which is in gen-
eral a much smaller set of behaviors
than the Chaos machine. This ap-
proach provides the following bene-
fits:

1. A better explanation for the num-
ber of variables needed for de-
scribing the most general behavior of the new module (in fact, a copy of the vari-
ables in S and in C suffice).

2. A smaller representation of the most general behavior for the new module which
results from the fact that a single mapping of new module variables to the variables
of S and C can be used, instead of having a solution with all possible permutations
of variable mappings. Each variable of the new module is mapped to its original
variable in either C or S.

The other aspect of our new approach is the use of the concept of generic “unre-
fined” transitions instead of using “interaction chaos” and the means of selecting only
refinements that contribute to the solution. In our previous algorithm all possible re-
finements were explicitly considered, which though theoretically possible, becomes
very unpractical for rather simple submodule construction problems. We need to note
that in the behavior superset only transitions that are executed by the new module can
be refined since we have full control over the new module. And thus two types of re-
finements are possible. These are: conditions on what the new module sends or re-
ceives, and options of where the new module stores received values.

Traditionally to overcome the effect of hiding in the case of finite label transition
systems, transition closure and determinization were enough. However, when vari-
ables enter the picture as in our model we need to do something more, we basically
need to make sure that variables are used properly, that is variables use the right val-
ues as defined in the specifications. We are especially interested in dataflow relations
that cross machine borders. The Chaos solution explicitly generates all possible re-
finements and consequently all possible dataflow associations, however, not all these
dataflow relations are needed or at least need to be identified, we only need to find all
possible dataflow relations that simulate specification dataflow relations.

Thus the idea behind our approach is to perform dataflow analysis on the general
behavior in order to identify the needed refinements. Accordingly, parameter value
storage refinements are identified using forward propagation of definitions dataflow
analysis. Meanwhile, conditions on received and sent data refinements are identified
using backward propagation of usage dataflow analysis.

4 Algorithm Modifications

The new algorithm manipulates guards using the disjunctive normal form (disjunction
of conjuncts). So, a transition can be viewed as a group of transitions where each

Fig. 2. Dual Based Approach for Submodule
Construction

(S'.C)' C
Vc

Vs

Vs' Vc'

S'

194 B. Daou and G.v. Bochmann

transition has a guard formed of a single conjunct of the original transition’s con-
juncts. The algorithm handles the conjuncts collectively when possible and separately
when situation demands such as in some cases of the backward state and transition
splitting. Regarding negation and inequality their effect is limited to the conformance
predicate which checks whether a transition guard is enabled for a given matching re-
lations which we represent using a variable partition.

Alogrithm 1. Submodule Construc-
tion Algorithm Steps [DaBo05]:
Given C, S:, ∑X Alphabet
1. G1:=Chaos(∑X , |S.V|+|C.V|).(S’. C)
2. R := ComputePartitions(G1)
3. G2 := Split(G1, ∑X , R,)
4. G3:= Hide(G2, (∑C U ∑S)-∑X, S.V U

C.V)
5. G4:= Determinize(G3)
6. X:=RemoveUncontrollableBehav-

ior(G4)
7. Return X

Algorithm 2. New Submodule Con-
struction Algorithm Steps:
Given C, S:, ∑X Alphabet
1. G0:= (S.C)’.(S’.C)
2. G1 = AddRefinements(G0)
3. R := ComputePartitions(G1)
4. G2 = Split(G1, ∑X , R,)
5. G3 :=Hide(G2, (∑C U ∑S) - ∑X , S.V U

C.V)
6. G4 := Determinize(G3)
7. X := RemoveUncontrollableBehavior(G4)
8. Return X

In the following we provide a high level outline of the new algorithm step “AddRe-
finements” sub-algorithm focusing on refinements added due to specification context
definition and corresponding new module usage.

Algorithm 3. AddRefinements (G)
• CX = { (t1, t2, c1, s1) | t1 is a transition where the definition of C variable c1 simulates

definition of specification variable s1 and t2 is the transition where the corresponding
usage of s1 takes place in X }

• Done = {} //represent handled define-use associations.
• Loop While not (CX = {})

 Remove (t1, t2, c1, s1) from CX
 Done := Done U {(t1, t2,c1, s1)}
 CX := CX U ({ (t3, t2, c3, s1) | t3 is a transition where c1 is used to define

c3 such as c3:=c4} – Done)
 For each t in {t | t has an output interaction sent from C to X, where a pa-

rameter p of t takes c1 value}
 If t already has an assigning s1 to a parameter p2 other than p

• Replicate t3 replace s1:= p2 with s1 = p
 Else Add s1:=p to t3

The algorithm is guaranteed to stop since the possible dataflow relations existing
are finite and the algorithm does not handle dataflow relation that has been already
handled.

5 Conclusion and Future Work

This paper continues the work done on extending submodule construction techniques
for finite state machines to more expressive behavioral models. We have eased the re-
striction on the model mainly allowing conjunction, disjunction, explicit negation and

 Generalizing the Submodule Construction Techniques 195

state variables equality predicates in state transition guards. We have presented a new
solution approach that improves the practicality and efficiency of the algorithm, justi-
fies the number of variables used in the new module, and results in a smaller solution
by considering a standard mapping of new module variables to context and specifica-
tion variables. We have provided an outline of the new algorithm that is based on
dataflow analysis mainly backward propagation of criteria and forward propagation of
definitions. This work will be the basis for adding more extensions to the behavioral
model, such as considering functions and general predicates over variables which we
are currently considering.

References

[BrWo94] B. A. Brandin, and W.M. Wonham. Supervisory Control of Timed Discrete
Event Systems. IEEE Transactions on Automatic Control, Vol. 39, No. 2, pp.
329-342, 1994.

[CDFM01] V. Carchiolo, N. De Francesco, A. Fantechi, G. Mangioni, "ESA: an approach to
Systems Design by Equation Solving". FMICS'2001, Paris, France, July 2001.

[DaBo05] B. Daou and G.V. Bochmann. Submodule Construction for Extended State ma-
chine Models. FORTE 05,pp. 396-410, 2005.

[DrBo99] J. Drissi, and G.V. Bochmann. Submodule Construction for Systems of I/O Auto-
mata. Tech. Rep. no. 1133, DIRO, University of Montreal, 1999.

[JoLa91] B. Jonsson, K.G. Larsen. On the complexity of equation solving in behavior ex-
pression algebra. TAPSOFT'91, vol. 1, LNCS 493, pp. 381-396, 1991.

[KeHa93] S.G. Kelekar, G. W. Hart. Synthesis of Protocols and Protocol Converters Using
the Submodule Construction Approach. PSTV93, pp. 307-322, 1993.

[KNM97] R. Kumar, S. Nelvagal, and S. I. Marcus. A Discrete Event Systems Approach
for Protocol Conversion. Discrete Event Dynamical Systems: Theory and Appli-
cations, Vol. 7, No. 3, pp. 295-315, 1997.

[LaXi90] K. Larsen, L. Xinxin. Equation solving using modal transition systems.
LICS'90, 1990.

[LeQi90] P. Lewis and H. Qin. Factorization of finite state machines under observational
equivalence. LNCS 458, Springer, 1990.

[MeBo83] P. Merlin, and G. v. Bochmann. On The Construction of Submodule Specifica-
tions and Communication Protocols, ACM Trans. On Programming Languages
and Systems. Vol. 5, No. 1, pp. 1-25, 1983

[PeYe98] A. Petrenko and N. Yevtushenko. Solving Asynchronous Equations. FORTE'98,
(1998), 231-247.

[Parr89] J. Parrow. Submodule Construction as Equation Solving in CCS. Theoretical
Computer Science, Vol. 68, 1989.

[TBD97] Z. Tao, G. v. Bochmann and R. Dssouli. A Formal Method For Synthesizing Op-
timized Protocol Converters And Its Application To Mobile Data Networks. Mo-
bile Networks & Applications, Vol.2, No. 3, pp. 259-69, 1997.

	Introduction
	Model Extensions
	New Solution Approach
	Algorithm Modifications
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

